Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Объяснение:
Все задания одинаковые поэтому ход решения я напишу один раз:
При умножение выражения в одной скобке на другую мы поэтапно умножаем все числа из первой скобки на все числа из второй. Например:
(a + b) × (c - d) =
Сначала умножаем "а" на "с" и "-d" ("минус" d)
ас - ad
Далее тоже самое с "b":
bc - bd
Сводим воедино:
(a + b) × (c - d) = ас - ad + bc - bd
778.Доказать тождество означает доказать что левая часть уравнения равна правой.
а) а² + 7а + 10 = (а + 2) × (а + 5)
а² + 7а + 10 = а² + 5а + 2а + 10
а² + 7а + 10 = а² + 7а + 10
б) b² - 9b + 20 = (b - 4) × (b - 5)
b² - 9b + 20 = b² - 5b - 4b + 20
b² - 9b + 20 = b² - 9b + 20
в) (c - 8) × (c + 3) = c² - 5c - 24
c² - 5c - 24 = c² - 5c - 24
г) (m - 4) × (m + 7) = m² + 3m - 28
m² + 3m - 28 = m² + 3m - 28
779.a) (x + 5) × (x - 7) = x² - 2x - 35
x² - 7x + 5x - 35 = x² - 2x - 35
x² - 2x - 35 = x² - 2x - 35
б) (а - 11) × (а + 10) + 10 = (а - 5) × (а + 4) - 80
а² + 10а - 11а - 110 + 10 = а² + 4а - 5а - 20 - 80
а² - а - 100 = а² - а - 100