Примем одну сторону как "х", другую как "у". Составляем систему уравнений (цифры с двоеточием заменить фигурной скобкой)
1: х - у = 14
2: х^2 + y^2 = 26^2
Получаем, что:
х = (14 + у)
(у^2 + 28y + 196) + y^2 = 676
Приводим подобные:
2y^2 + 28y - 480 = 0
Сокращаем на "2":
y^2 + 14y - 240 = 0
Далее решаем по теореме Виета для квадратных уравнений, либо через дискриминант (лично я предпочитаю второе):
a = 1, b = 14, c = -240
D = b^2 - 4ac
D = 14*14 + 4*240 = 1156
√D = 34
у1 = -b+√D/2a = -14+34/2 = 10 см.
y2 = -b-√D/2a = -14-34/2 = -24 см (таких сторон прямоугольников не существует в природе, вычеркиваем =)).
Подставляем в первое уравнение х = (14 + у) и... о чудо!:
14+10 = 24 см.
ответ: Большая сторона данного прямоугольника равна 24 сантиметрам.
Объяснение:
1)x4 + 13x2 + 36 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
y2 + 13y + 36 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 132 - 4·1·36 = 169 - 144 = 25
y1 = -13 - √25 = -9
2·1
y2 = -13 + √25 = -4
2·1
x2 = -9
x2 = -4
2)25x4 + 16x2 + 9 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
25y2 + 16y + 9 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 162 - 4·25·9 = 256 - 900 = -644
ответ: так как дискриминант меньше нуля то корней нет
Иррациональное
Решение
:
1)x+5=0
x+(5-5)= -5
x= -5
2) x= _ 1
5