х-время выполнения задания первой машинисткой
у-время выполнения задания второй машинисткой
1:х-производительность первой машинистки
1:у-производительность второй машинистки
1:х+1:у-совместная производительность
примем объем результата = 1
у нас 2 неизвестных поэтому составляем схему из 2-х уравнений
По условию задачи, вторая машинистка выполняет работу на 8 часов медленней, чем первая, следовательно время работы второй машинистки на 8часов больше, чем первой:
у=х+8
обе машинистки выполняют эту работу за 3 часа,следовательно время совместной работы = зчаса.получаем второе уравнение:
(х:1+у:1)3=1
получили систему уравнений6
у=х+8
(х:1+у:1)3=1
(1:(х+8)+1:х)3=1
3:(х+8)+3:х=1
3х+3(х+8)=х(х+8)
6х+24=х*х+8х
6х-х*х-8х+24=0
24-х*х-2х=0
х=4 часа выполняет задание первая машинистка
4+8=12 часов выполняет задание вторая машинистка
ответ:4,12.
Sn = (2*a1+(n-1)*d)*n) / 2
a1 - первый член прогрессии (у нас это 5)
d - разность прогрессии
n - количество членов, для которых мы считаем сумму.
Итак, поехали. Сначала найдем d. Для этого нужно поделить соседние члены прогрессии.
d = -10 / 5 = -2
Теперь подставляем известные нам данные в формулу, посчитаем что сможем и выразим n.
-425 = ((2*5+(n-1)*(-2))*n)/2
-425 = (10 + (-2*n+2)*n)/2
-425 = (10 -2*n^2 + 2*n)/2
- 2n^2 + 2n + 10 = -850
-2n^2+2n+10+850=0
-2n^2+2n+860 = 0
Вот и получилось у нас квадратное уравнение ;)
разделю его на - 2, чтобы проще было решать.
n^2-n-430 = 0
Теперь считаем дискриминант
D= b^2 - 4ac
a - коэффициент перед х в квадрате
b - коэффициент перед х
с - число без переменной.
D= 1 + 4*430= 1721
n = (-b2+-корень из D)/2
n1 = (1+корень из 1721)/2
n2 = (1- корень из 1721)/2
к сожалению я либо где-то обсчиталась, либо надо извлечь из корня приблизительное значение, т.к. оно ну никак не извлекается. Ошибку найти не могу, но принцип решения ясен? =)
Потом в итоге получется 2 разных n. В ответ пиши только положительное, т.к. отрицательных n не бывает.