чтобы определить знак функции достаточно определить в какой координатной четверти она находится. Знаки синуса соответствуют знакам на оси у, а знаки косинуса оси х.
В)
1) –83° – угол отрицательный, приведём его к положительному:
Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
чтобы определить знак функции достаточно определить в какой координатной четверти она находится. Знаки синуса соответствуют знакам на оси у, а знаки косинуса оси х.
В)
1) –83° – угол отрицательный, приведём его к положительному:
(–83°+360°)=277°; 277° ∈ [270°; 360°] – Ⅳ четверть.
sin 277° < 0; cos 277° > 0
2) 198° ∈ [180°; 270°] – Ⅲ четверть.
sin 198° < 0; cos 198° < 0
3) –295° < 0, приведём его к положительному:
(–295°+360°)=65°; 65° ∈ [0°; 90°] – Ⅰ четверть;
sin 65° > 0; cos 65° > 0
4) 1540°=(4×360°+100°)=(1440°+100°)=100°; 100° ∈ [90°; 180°] – Ⅱ четверть;
sin 100° > 0, cos 100° < 0
Г) Для удобства переведем радианы в градусную меру.
1) π/15=180°÷15=12°; 12° ∈ [0°; 90°] – Ⅰ четверть;
sin 12° > 0; cos 12° < 0
2) –17π/14= –17×180÷14≈ –219° < 0;
(–219°+360°)=141°; 141° ∈ [90°; 180°] – Ⅱ четверть;
sin 141° > 0; cos 141° < 0
3) 40π/21=40×180÷21≈343°;
343° ∈ [270°; 360°] – Ⅳ четверть;
sin 343° < 0; cos 343° > 0
4) –37π/30= –37×180÷30= –222° < 0;
–222°+360°=138°; 138° ∈ [90°; 180°] – Ⅱ четверть;
sin 138° > 0; cos 138° < 0