1)
а) Д= 25+96=121
x1= (-5+11)/2=3
х2= (-5-11)/2=-13
б) Д= 361+168=529
х1= (19+23)/6=7
х2=(19-23)/6= 4/6
2)a) x^2 -14x +49 = (x-7)^2
б) x^2 + 5x -6 = (x+5)^2 -5x -31
в)
3)x^2 -4x +31>0
Д=16-4*31 < 0 => нету пересечения с осью ox, т.к. ветви вверх, то всегда >0
б) 9x^2 +24x +16
Д= 576-576=0 => 1 т. пересечения с осью ox, ветви вверх => >=0
5) 4x^2 -x = x(4x-1)
б) x^2 +7x+10
Д=49-40=9
x1= -7+3/8= -1/2
x2= -5/4
x^2+7x+10=(x+1/2)(x+5/4)
В) 5x^2 - 7x +2
Д= 49-40=9
x1 = 7+3/10=1
x2= 7-3/10= 4/10=0,4
5x^2 - 7x +2 = 5(x-1)(x-0,4) про 5 не уверен
Г) -2x^2-9x-9=2x^2 + 9x +9
Д=81-72=9
x1= -9-3/4=-3
x2=-9+3/4= -6/4
2x^2 + 9x + 9 = 2(x+3)(x+6/4) про 2 не уверен :C
а + b = b + а , а + (b + с) = (а + b) + с .
Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю. Значит, для любого рационального числа имеем:
а + 0 = а , а + (– а) = 0 .
Умножение рациональных чисел обладает переместительным и сочетательным свойствами. Если, а , b и c рациональные числа, то:
ab = ba , a(bc) = (ab)c .
Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1 . Значит, для любого рационального числа а имеем:
а • 1 = а ;
Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа а имеем:
а • 0 = 0 ;
Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:
если а • b = 0 , то либо а = 0 , либо b = 0
(может случиться, что и а = 0 , и b = 0 ) .
Умножение рациональных чисел обладает и распределительным свойством относительно сложения. Другими словами, для любых рациональных чисел а , b и c имеем:
(а + b)с = ас + bс.