1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Такі функції мають вигляд : y=kx+m- пряма k-кутовий коефіцієнт В умові задачі нам дана арифметична прогресія, усі члени якої є натуральними, двоцифровим числами , які кратні числу 4
Перший член цієї прогресії - 12 (так як число 12 є двоцифровим і ділиться на 4 без залишку)
Другий член цієї прогресії - 16 (16=4*4)
знайдемо різницю арифметичної прогресії. 16-12=4 d=4 Тепер необхідно знайти число, яке менше від 41 і ділиться на 4. Це число 40 (40=4*10)
Найдемо суму членів ап
- перший член - у даному випадку останній член (40) k=-208