Каноническое уравнение, задающее эллипс, выглядит так:
Перепишем уравнение эллипса, поменяв местами параметры и :
При этом мы получим конгруэнтный эллипс, только повёрнутый в системе координат на 90° (конгруэнтность следует из симметричности канонического уравнения). Поэтому он будет иметь тот же эксцентриситет и то же фокальное расстояние.
Найдём эксцентриситет:
Найдём фокальное расстояние (полурасстояние между фокусами):
Тогда расстояние между фокусами в два раза больше: .
ответ: 6 ед.
На чертеже изображён данный эллипс. и — его фокусы.
a=-(-2)²+3=-4+3=-1
подставим абсциссу точки М (3) в функцию, если получится ордината (6а=-6), то М принадлежит графику
-3²+3=-9+3=-6 - М принадлежит графику данной функции