1) (x2-9)(x+4)<0
(x2-9)(x+4)=0
x2-9=0 x+4=0
x2=9 x=-4
x=3,-3
x(-бесконечность;-4)u(-3;3)
2)y2-xy=33 y2-11y-y2=33 -11y=33 y=-3
x-y=11 x=11+y x=11+y x=11-3=8
(8;-3)
3)a1=16, d=20-16=4
an=16+4(n-1)
а)16+4n-4=44
4n+12=44
4n=32
n=8 т.к. 8 целое число, значит подходит
б)16+4n-4=52
4n=40
n=10 подходит
в)4n+12=68
4n=54
n=54\4 нецелое число не подходит
г)4n+12=64
4n=52
n=13 подходит
ответ: подходят варианты а, б и г
4)bn=b1*q^n-1
bn=-128*(-1\2)^n-1
посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
5)a)(n+2)!(n+1)>(n+1)!(n+2)
т.к. n!+2!=(n+2)!
n!+1!=(n+1)!, n!=n!, а 1!=1, 2!=1*2=2
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
31°
Объяснение:
∠C=∠B по свойству равнобедренного треугольника
Найдём их углы
56°+х+х=180°
2х=124°
Градусная мера угла B 62°, как и у C
Биссектриса делит угол, из которого выходит, на две равные части
Значит,
∠ACB=62°:2=31°