Согласно правилу суммы при дифференцировании функции, производной
Объяснение:
Пусть функция y = f(x) определена в некотором интервале, содержащем внутри себя точку x_0 . Дадим аргументу приращение \Delta x такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \Delta y (при переходе от точки x_0 к точке x_0 + \Delta x ) и составим отношение \frac{\Delta y}{\Delta x} . Если существует предел этого отношения при \Delta x \rightarrow 0 , то указанный предел называют производной функции y=f(x) в точке x_0 и обознача
Объяснение:
Средне арифметическое подсчитано уже в задании, но на всякий случай: (1*0+2*0+3*4+4*9+5*10+6*8+7*7)/(0+0+4+9+10+8+7 ≈ 5,13Оно показывает, что в среднем учащиеся верно выполнили по 5,13 задания.
Наибольшее число верно выполненных заданий равно 7, а наименьшее равно 3. Размах рассматриваемого ряда данных равен 7-3=4.Размах показывает насколько велик разброс данных в ряду.
Из таблицы видно, что чаще всего встречаются работы, в которых верно выполнено 5 заданий, т. е. мода равна 5.Мода показывает, что чаще всего ученики выполняют 5 заданий верно.
(х-4) × (х+1)=0
х-4=0
х+1=0
х=4
х1= -1