Дано неравенство ((2x-3) / (x^2+2x)) > 0,125 или ((2x-3) / (x^2+2x)) > 1/8.
Умножим обе части на 8: (16x - 24) / (x^2+2x) > 1.
По свойству дроби числитель больше знаменателя:
(16x - 24) > (x^2+2x). Перенесём левую часть вправо.
Получим равносильное неравенство x^2 + 2x - 16х + 24 < 0 или
x^2 - 14х + 24 < 0. Д = 196 - 4*24 = 100.
х1 = (14 + 10)/2 = 12, х2 = (14 - 10)/2 = 2.
Исходное неравенство можно представить так:
(х - 12)(х - 2)/(х(х + 2)) < 0.
Используем метод интервалов: -2 0 2 12
+ - + - +
Отсюда ответ: -2 < x < 0; 2 < x < 12.
Объяснение:Скорость парохода в стоячей воде обозначим v км/ч. Скорость течения нам известна - 4 км/ч. По течению пароход км со скоростью v + 4 км/ч, против течения еще 48 км со скоростью v - 4 км/ч, и затратил на все это 5 ч времени. Составляем уравнение: 48/(v + 4) + 48/(v - 4) = 5 переносим 5 влево и приводим к общему знаменателю: [ 48*(v - 4) + 48*(v + 4) - 5(v + 4)(v - 4) ] / [ (v + 4)(v - 4) ] = 0 Числитель приравниваем к 0 и раскрываем скобки: 48v - 4*48 + 48v + 4*48 - 5(v^2 - 16) = 0 Раскрываем скобки и приводим подобные: 96v - 5v^2 + 80 = 0 Меняем знак: 5v^2 - 96v - 80 = 0 D/4 = 48^2 + 5*80 = 2304 + 400 = 2704 = 52^2 v1 = (48 - 52) / 5 < 0 v2 = (48 + 52) / 5 = 20 ответ: 20 км/ч.