В решении.
Объяснение:
1) 5а³ - 125аb² = 5a(a² - 25b²) = 5a(a - 5)(a + 5);
2) a² - b² - 5a + 5b =
= (a² - b²) - (5a - 5b) =
= (a - b)(a + b) - 5(a - b) =
= (a - b)(a + b - 5);
3) а²- 2ав + в² - ас + вс =
= (а²- 2ав + в²) - (ас - вс) =
= (a - b)² - c(a - b) =
= (a - b)(a - b - c);
4) 25a² + 70ab + 49b² =
= (5a + 7b)² =
= (5a + 7b)(5a + 7b);
5) a² - 2ab + b² - 3a + 3b =
= (a² - 2ab + b²) - (3a - 3b) =
= (a - b)² - 3(a - b) =
= (a - b)(a - b - 3);
6) 63ab³ - 7a²b =
= 7ab(9b² - a);
7) (b - c)(b + c) - b(b + c) =
= (b + c)(b - c - b) =
= -c(b + c);
8) m² + 6mn + 9n² - m - 3n =
= (m² + 6mn + 9n²) - (m + 3n) =
= (m + 3n)² - (m + 3n) =
= (m + 3n)(m + 3n - 1);
9) a² - 9b² + a - 3b =
= (a² - 9b²) + (a - 3b) =
= (a - 3b)(a + 3b) + (a - 3b) =
= (a - 3b)(a + 3b + 1).
1) Если у треугольника все углы равны, то каждый из них равен 60°. Покажем, что из этого следует, что все биссектрисы - высоты. Положим, что BH на рисунке - биссектриса. Тогда она делит ∠ABC пополам. ∠HBC = 30°, ∠BCH = ∠BCA = 60° из условия. ⇒ ∠BHC = 90° ⇒ BH - высота. Так как это справедливо для всех биссектрис треугольника, то все биссектрисы - высоты.
2) Теперь предположим, что все высоты - биссектрисы. Покажем, что из этого следует, что все углы равны. По условию BH - биссектриса и высота. Значит ∠ABH = ∠HBC (так как биссектриса) и ∠BHC = ∠BHA = 90° (так как высота). А так как у треугольников ABH и HBC равны 2 угла и одна сторона - общая, то эти треугольники равные, а значит и равны остальные углы. ∠CAB = ∠ACB. Из того что ВСЕ высоты - биссектрисы, несмотря на то, из какого угла они опущены, то такое же рассуждение можно повторить для оставшихся высот. А значит все углы треугольника попарно равны друг другу ⇒ все углы равны.