Сумма внутренних углов выпуклого многоугольника равна 180(n-2), где n- число сторон в многоугольнике.Возьмем любой многоугольник и поставим внутри его точку О. Затем эту точку О соединим со всеми вершинами многоугольника. Получится n треугольников, где n - число сторон многоугольника. Сумма углов в треугольнике равна 180 градусов. А сумма углов в n треугольниках будет равна 180n. А сумма углоа вокруг точки О равна 360 градусов. И если мы из 180n вычтем сумму углов вокруг точки О, то получится 180n - 360 = 180(n-2).
y=11+6√x-2x√x D(f)=x∈(0:+∞)
2x√x=2*x¹*x¹/₂=2*x³/²
6√x=6*x¹/²
f(x)=-2*x³/²+6*x¹/²+11
(2*x³/²)`=3*x¹/²=3√x
(6*x¹/²)`=3/x¹/²=3/√x
(11)`=0
f`(x)=-3√x+3/√x
Приравниваем производную к нулю:
-3√x+3/√x=0
-3√x*√х+3=0
-3х+3=0
-3х=-3
х=1 - критическая точка.
Чтобы узнать, достигает ли функция максимума в точке экстремума х=1, нужно определить знаки производной методом интервалов (рисунок во вложении):
f`(1)=0
f`(0.25)=-3√0.25+3/√0.25=4.5>0 - функция возрастает на отрезке (0;1)
f`(4)=-3√4+3/√4=-4.5<0 - функция убывает на отрезке (1;+∞)
При переходе через точку х=1 производная меняет знак с "+" на "-", значит х=1 - точка максимума функции.