По формуле общего члена геометрической прогрессии:
Найти b₅₀/b₁₀=b₁·q⁴⁹/b₁·q⁹=q⁴⁰.
По условию: S₃₀ меньше (S₉₀-S₃₀) в 72 раза. Значит 72S₃₀=S₉₀-S₃₀ или 73S₃₀=S₉₀.
По формуле суммы n- первых членов геометрической прогрессии:
73b₁(q³⁰-1)=b₁(q⁹⁰-1); 73q³⁰-q⁹⁰=72
q³⁰=t q⁹⁰=(q³⁰)³=t³ Кубическое уравнение t³-73t+72=0 Легко заметить, что t=1 является корнем уравнения 1-73+72=0- верно. Это разложить левую часть на множители. t³-1-73t+73=0 (t-1)(t²+t+1)-73(t-1)=0 (t-1)(t²+t-72)=0 t₁=1 или t²+t-72=0 D=1+288=289 t₂=(-1-17)/2=-9 или t₂=(-1+17)/2=8 q³⁰=-9 - уравнение не имеет корней. q³⁰=8; (q¹⁰)³=2³. Значит q¹⁰=2 q⁴⁰=2⁴=16 О т в е т.b₅₀/b₁₀=q⁴⁰=16.
Программа на Руби
for n in -10000..10000
for k in 0..1000
p [n,k] if 10*n + 5 == k*k
end
end
Вывод
[2, 5]
[22, 15]
[62, 25]
[122, 35]
[202, 45]
[302, 55]
[422, 65]
[562, 75]
[722, 85]
[902, 95]
[1102, 105]
[1322, 115]
[1562, 125]
[1822, 135]
[2102, 145]
[2402, 155]
[2722, 165]
[3062, 175]
[3422, 185]
[3802, 195]
[4202, 205]
[4622, 215]
[5062, 225]
[5522, 235]
[6002, 245]
[6502, 255]
[7022, 265]
[7562, 275]
[8122, 285]
[8702, 295]
[9302, 305]
[9922, 315]
т.е. подразумевается что есть и другие решения, если расширять диапазон