М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
OLYA332321
OLYA332321
10.05.2022 21:14 •  Алгебра

Задания по теме умножение многочлена на многочлен ( отправить до 05.02.22 включительно в ГИСОЛО) Умножьте многочлен на многочлен
1) (x + 1)(x + 2);
1) (x + 1)(x2 - 2x - 1);
3) (x + 4)(у - 4);
3) (x2 + b)(x + 2b + b2);
5) (x + а)(у - a);
1) (x + 1)(x2 - x + 1);
1) (x2 + b)(x2 + 2b);
3) (2m + n2)(2n - m2) 3) (a2 - b)(a1 + a2b + b2);
2) (у2 + c)(y2 + 3c);
4) (2a + b2)(2b - a2);
1)(a - b)(a + b)(ab - c)

👇
Открыть все ответы
Ответ:
marktopskiy34567
marktopskiy34567
10.05.2022
1.
1) Наверное, здесь опечатка? y = x^3 и y = √(x^3)
Найдем точки их пересечения.
x^3 = √(x^3)
x1 = 0;
делим все на √(x^3)
√(x^3) = 1; x2 = 1
Находим площадь
Интеграл (0,1) (x^(3/2) - x^3) dx = [ 2/5*x^(5/2) - x^4/4 ] | (0, 1) =
= 2/5 - 1/4 - 0 = 0,4 - 0,25 = 0,15
2) Найдем точки их пересечения.
-x^2 + 4 = 4 - x
x^2 - x = 0
x1 = 0; x2 = 1
Находим площадь
Интеграл (0,1) (-x^2 + 4 - 4 + x) dx = Интеграл (0,1) (-x^2 + x) dx =
= [ -x^3/3 + x^2/2 ] | (0,1) = -1/3 + 1/2 - 0 = 1/6
3)  Найдем точки их пересечения.
x^2 = 4; x1 = -2; x2 = 2
Находим площадь
Интеграл (-2, 2) (4 - x^2) dx = [ 4x - x^3/3 ] | (-2, 2) = (4*2 - 8/3) - (-4*2 + 8/3) =
= 8 - 8/3 + 8 - 8/3 = 16 - 16/3 = (48 - 16)/3 = 32/3
4) Касательная к параболе y = -x^2+2x в точке x0 = 0,5 - это прямая
f(x) = y(0,5) + y'(0,5)*(x - 0,5) = (-0,25+1) + (-1+2)*(x - 0,5) = x + 0,25.
Пределы интегрирования: x1 = 0 (ось Oy) и x2 = 0,5
Находим площадь
Интеграл (0; 0,5) (x+0,25-(-x^2+2x)) dx = Интеграл (0; 0,5) (x^2-x+0,25) dx =
= [ x^3/3 - x^2/2 + 0,25x ] | (0; 0,5) = 0 - ((1/8)/3 - (1/4)/2 + 1/4*1/2) = -1/24
5) Интеграл (-2, 2) (√(-x+2) - x^3) dx = [ -2/3*(-x+2)^(3/2) - x^4/4 ] | (-2, 2) =
= -2/3*0^(3/2) - (-2)^4/4 - (-2/3*4^(3/2) - 2^4/4) = 0 - 4 + 2*8/3 + 4 = 16/3

2. Интеграл (-1, 0) (x^2 - 2x)(3 - 2x)/(x-2) dx = Интеграл (-1, 0) x(3 - 2x) dx =
= [ 3x^2/2 - 2x^3/3] | (-1, 0) = 0 - (3*1/2 - 2(-1)/3) = -3/2 - 2/3 = -13/6

3. Интеграл (0,1) (2x+3)/(2x+2) dx = Интеграл (0,1) (1 + 1/(2x+2)) dx =
= [x + 1/2*ln|2x+2| ] | (0, 1) = (0 + 1/2*ln 2) - (1 + 1/2*ln 4) =
= -1 + 1/2*(ln 2 - ln 4) = -1 + 1/2*ln(2/4) = -1 + 1/2*ln(1/2) = -1 - 1/2*ln 2
4,7(69 оценок)
Ответ:
soldatgtr
soldatgtr
10.05.2022
Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.   
4,8(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ