3) f(x)= 1. Сначала находим область определения этой функции. Функция задана многочленом, D(f)=R , ну или (-∞;+∞) 2. Находим производную. Применяем формулы (2*²=4x) и x=1 (4*x=4*1=4) Итак: f '(x)=4x-4 3. Приравниваем полученную производную к нулю. f '(x)=0, 4x-4=0, решаем уравнение. 4x=4 x=1 ---⁻---(1)---⁺--- проверка знаков: проверим (+). Подставляем в полученную производную, например, цифру 2 вместо x: 4*2-4=4, число положительное, значит ставим знак плюс. Проверим (-). Подставим -1, -4-4=-8, число отрицательное, значит в интервале минус. Когда минус переходит на плюс, это считается точкой минимума. Наоборот - максимума. У нас минимум. xmin=1
Для того чтобы решать такие уравнения, сначала необходимо найти ОДЗ (область допустимым значений), или те корни, которые обращают знаменатель дроби в нуль. ОДЗ: Дальше, чтобы избавиться от знаменателя, нужно привести дроби к общему знаменателю и умножить на него обе части уравнения: Меняем знак второй дроби, чтобы у нас получилась формула сокращенного умножения, а вследствие и общий знаменатель, и умножаем на него. Решив его по т. Виета путем подбора, получим корни Возвращаемся к ОДЗ и видим, что 2 - посторонний корень, поэтому исключаем его и записываем в ответ -5. ответ: -5
Будем считать, что дана арифметическая прогрессий, сумма трёх первых членов которой равна 15.
Её свойство: an+1= an + d, где d — это разность арифметической прогрессии.
Запишем сумму по условию для трёх членов.
Пусть первый х.
х + (х + d) + (х + 2d) = 15,
3х + 3d = 15 или, сократив на 3: х + d = 5.
То есть второй член найден и равен 5.
Получили члены арифметической прогрессии:
х, 5, (15 - х - 5) = х, 5, (10 - х).
Теперь используем условие для геометрической прогрессии:
(х + 1), (5 + 4), (10 - х + 19).
(х + 1), 9, (29 - х). Получили 3 члена геометрической прогрессии.
По свойству геометрической прогрессии:
(х + 1) / 9 = 9 / (29 - х).
Решаем эту пропорцию как квадратное уравнение и определяем его 2 корня: х1 = 2 и х2 = 26.
Последнее число не подходит.
Принимаем х = 2 и получаем ответ:
заданные числа равны 2, 5 и 8.