М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kozakova13
kozakova13
20.04.2020 18:05 •  Алгебра

Постройте график функции и найдите координаты вершины параболы (14.23—14.25):
14.23. 1) y = (x - 1,6). (x + 3,5);
2) y = (2,5.x - 4). (x + 2);
3) y = (1,2x + 3,6). (x - 5).

👇
Открыть все ответы
Ответ:
alisavakhnina1
alisavakhnina1
20.04.2020

Нули функции (-5; 0)  (-1; 0)  (4; 0)  (10; 0)

У>0 при х∈(-5, -1)  и при х∈(4, 10)

Объяснение:

а)Нули функции это точки пересечения графиком оси Ох, где у ВСЕГДА равен нулю.

Таких точек здесь 4, координаты: (-5; 0)  (-1; 0)  (4; 0)  (10; 0)

б)Если заменить слово "аргумент" на х, а "функция" на у, то понятно, что нужно определить, при каких значениях х  у>0.

На графике ясно видны эти отрезки, где функция выше оси Ох.

Таких отрезков 2: от -5 до -1  и от 4 до 10.

У>0 при х∈(-5, -1)  и при х∈(4, 10)

4,4(90 оценок)
Ответ:
pya98
pya98
20.04.2020

ответ:Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками во о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Объяснение:

4,4(63 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ