1 (6^5-36²+216)/93=(6^5-6^4+6³)/93=6³*(36-6+1)/93=6³*31/93= =6³/3=6²*2*3/3=6²*2=36*2=72 2 4444 цифра 4 повторенная 30раз) а)делится на 4 Можно записать 4*(111...1) (1 повторенная 30раз) Произведение содержит множитель 4,значит делится на 4 Или число оканчивается на 44,44 делится на 4,значит и число делится. б)делится,так как сумма цифр будет120,о 120 делится на 3. в)не делится,так как сумма цифр не делится на 9. г)Число делится на 2,так как оканчивается на 4 и делится на 3 (см.б),значит оно будет делится и на 6. д)делится на 66,потому что делится на 6 (см.г) и сумма цифр ,стоящих на нечетных местах (60) равна сумме цифр ,стоящих на четных местах (60).
В решении.
Объяснение:
1.
а) х² + 6х = 0 неполное квадратное уравнение
х(х + 6) = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
б) -3х² = 18х неполное квадратное уравнение
-3х² - 18х = 0
-3х(х + 6) = 0
-3х = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
2.
а) 3х² - 27 = 0 неполное квадратное уравнение
3х² = 27
х² = 9
х = ±√9
х = ± 3;
б) 18 - 6х² = 0 неполное квадратное уравнение
-6х² = -18
6х² = 18
х² = 3
х = ±√3.
3.
а) -5х² = 0 неполное квадратное уравнение.
х² = 0/-5
х = 0;
б) 32 + 8х² = 0 неполное квадратное уравнение.
8х² = -32
х² = -32/8
х² = -4;
Нет решения.
4.
а) 6х² - 13х - 15 = 0
D=b²-4ac = 169 + 360 = 529 √D=23
х₁=(-b-√D)/2a
х₁=(13-23)/12
х₁= -10/12
х₁= -5/6;
х₂=(-b+√D)/2a
х₂=(13+23)/12
х₂=36/12
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
б) -5х² - 27х + 56 = 0/-1
5х² + 27х - 56 = 0
D=b²-4ac = 729 + 1120 = 1849 √D=43
х₁=(-b-√D)/2a
х₁=(-27-43)/10
х₁= -70/10
х₁= -7;
х₂=(-b+√D)/2a
х₂=(-27+43)/10
х₂=16/10
х₂=1,6.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.