М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
xastek
xastek
28.01.2020 07:10 •  Алгебра

Наугад взято натуральное число, не более 20. Какова вероятность того, что загадываемое число: а) кратное 5; б) будет делителем 20?

👇
Ответ:
Princess040205
Princess040205
28.01.2020

множество натуральных чисел до 20 - {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

a) кратным пяти из множество будет множество {5, 10, 15, 20}. Вероятность того, что из 20 возможных мы выберем именно эти 4 равна  \frac{4}{20}=\frac{1}{5}=0.2

б) Делителями числа 20 будет множество {1, 2, 4, 5, 10, 20}. Вероятность того, что мы из 20 возможных выберем эти 6 равна \frac{6}{20} =\frac{3}{10}=0.3

4,6(81 оценок)
Открыть все ответы
Ответ:
isabaevisa
isabaevisa
28.01.2020
Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81.
Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649
Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.:
Начинающееся на 3:  3649
на 4: 49
на 5 - таких чисел нет
на 6: 649
на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7.
на 8: - 81649
на 9: - нет.
Итак, наибольшее: 81649.
4,8(37 оценок)
Ответ:
Megatrolll228
Megatrolll228
28.01.2020
Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81.
Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649
Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.:
Начинающееся на 3:  3649
на 4: 49
на 5 - таких чисел нет
на 6: 649
на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7.
на 8: - 81649
на 9: - нет.
Итак, наибольшее: 81649.
4,5(55 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ