Объяснение:
1) (m+n) (m-n) +n² = m² - mn + mn - n² + n² = m²
m² = 0,8² = 0,8 * 0,8 = 0,64
2) (a+b) (a+b) - a² - b² = а² + аb + ab + b² -a²-b²= 2ab
2ab = 2 * 0,1 * 10 = 2
Объяснение:
1.
а) a^2+3 / a^3 - 3-a / 3a = 3a^2+9-3a^2+a^3 / 3a^3 = a^3+9 / 3a^3
б) x / x-1 +x / x+1 = x^2+x+x^2-x / x^2-1 = 2x^2 / x^2-1
в) x / x-2y - 4y^2 / x^2-2xy = x / x-2y - 4y^2 / x(x-2y) = x^2 - 4y^2 / x(x-2y) = (x-2y)*(x+2y) / x(x-2y) = x+2y / x
г) 2a + b - 4ab / 2a+b = (2a(2a+b) + b(2a+b) - 4ab) / 2a+b = (4a^2+2ab+2ab+b^2 - 4ab) / 2a+b = 4a^2+b^2 / 2a+b = (2a+b)*(2a-b) / 2a+b = 2a-b
а) a+4 / 4a - a-2 / a^2 = a^2+4a-4a+8 / 4a^3 = a^2+8 / 4a^3
б) 3x / x+3 + 3x / x-3 = 3x^2-9x+3x^2+9x / x^2-9 = 6x^2 / x^2-9
в) 9x^2 / 3xy-y^2 - y / 3x-y = 9x^2 / y(3x-y) - y / 3x-y = 9x^2-y^2 / x(3x-y) = (3x-y)*(3x+y) / x(3x-y) = 3x+y / x
г) a-3b+6ab / a-3b = (a^2-3ab-3ab+9b^2+6ab) / a-3b = a^2+9b^2 / a-3b = (a+3b)*(a-3b) / a-3b = a+3b
y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение:
1) (m-n)(m+n)+n²=m²-n²+n²=m²
m=0,8 , 0,8²=0,64
2)(a+b)(a+b)-a²-b²=(a+b)² -a²-b²=a²=2ab+b² -a²-b²=-2ab
a=0,1 ,b=10 ,-2*0,1*10=-2