1) удвоенное произведение 2*2х*3у=12ху,
2) сумма квадратов (2х)²+(3у)²=4х²+9у²,
3) квадрат разности (2х-3у)²=4х²-12ху=9у²,
4) разность квадратов (2х)²-(3у)²=(2х-3у)(2х+3у) ,
5) утроенное произведение этих выражений 3*2х*3у=18ху,
6) утроенное произведение квадрата первого выражения
на второе 3(2х)²*3у=36х²у,
7) утроенное произведение первого числа на квадрат
второго 3*2х*(3у)²=54ху²,
8) сумма кубов(2х)³+(3у)³=(2х+3у)(4х²-6ху+9у²),
9) куб суммы (2х+3у)³=8х³+36х²у+54ху²+27у³,
10) разность кубов (2х)³-(3у)³=(2х-3у)(4х²+6ху+9у²), ,
11) куб разности (2х-3у)³=8х³-36х²у+54ху²-27у³, .
2
y=√(x−3)−|x+1|
одз: х>=3
y'=1/(2√(x−3))-sgn(x+1)
1/(2√(x−3))-sgn(x+1)=0
при х>=3 sgn(x+1) =1
1/(2√(x−3))-1=0
2√(x−3)=1
√(x−3)=1/2
x−3=1/4
х=3+1/4
y(3+1/4)=√(3+1/4−3)−|3+1/4+1|=√(1/4)−|4+1/4|=1/2−4-1/4=-3-3/4
ответ: -3-3/4
PS
находим наибольшее, потому как наименьшего не существует
пример при х=3 получится 0-4=-4 - еще меньше, но среди вариантов такого нет
и вообще при стремлении х к бесконечности линейная функция убывает быстрее чем растет корень, поэтому наименьшего на самом деле нет, а
-3-3/4 - наибольшее
3
по условию
3р2=р1+р3+р4
4р1=р2+р3+р4
р1+р2=1/11
р3+р4=-найти
от второго уравнения отнимаем первое
4р1-3р2=р2-р1
5р1=4р2
р1=0,8р2
р1+р2=0,8р2+р2=1,8р2
но р1+р2 известно по условию
1,8р2=1/11
р2=1/(1,8*11)=5/99
р1=0,8*5/99=4/99
р3+р4=3р2-р1=3*5/99-4/99=15/99-4/99=11/99=1/9
суммарная производительность 1/9 тогда времени - 9 дней
ответ: 9 дней
Оценку
Объяснение:
2(2x*3y)
(2x)^2+(3y)^2
(2x-3y)^2
(2x)^2-(3y)^2
3(2x*3y)
3((2x)^2*3y)
3(2x(3y)^2)
(2x)^3+(3y)^3
(2x+3y)^3
(2x)^3-(3y)^3
(2x-3y)^3