х^2+5х+4
аb+ad-cb-cd
b^2-2b-3
-x^2+5x-6
x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q:
x₁ + x₂= -p
x₁ · x₂= q
14 + x₂ = 26
x₂=26-14=12
q=14*12=168
x²-26x+168=0 - при желании можно проверить, подставив в уравнение корни, можно для проверки решить через дискриминант.
144-312+168=0
задача
70 м; 110 м
Периметр прямоугольника со сторонами а и b: Р = 2 * (a + b).
Площадь прямоугольника: S = a * b.
Следовательно, получим систему уравнений:
2 * (a + b) = 360.
a * b = 7700.
Решаешь системой уравнений
(a + b) =230
a=7700/b
7700/b+b=230
b^2 – 230 * b + 7700=0
ответ: функция непрерывна на всей числовой оси.
Объяснение:
Функция cos(x), а вместе с ней и функция y=3^[cos(x)], определена на всей числовой оси. Мы докажем непрерывность функции в точке x0, где x0 - любая точка числовой оси, если докажем стремление к нулю выражения y(x0+Δx)-y(x0) при Δx⇒0. Но y(x0+Δx)-y(x0)=3^cos(x0+Δx)-3^cos(x0)=3^[cos(x0)*cos(Δx)-sin(x0)*sin(Δx)]-3^cos(x0). При Δx⇒0 cos(Δx)⇒1, а sin(Δx)⇒0, поэтому выражение cos(x0)*cos(Δx)-sin(x0)*sin(Δx) стремится к cos(x0), а выражение 3^[cos(x0)*cos(Δx)-sin(x0)*sin(Δx)]-3^cos(x0) - к нулю. Таким образом доказана непрерывность данной функции на всей числовой оси.
6 (x+1)(x+4)=x2+4 (a-c)(b+d)=