«Молитва это вульгаризованная и рационалистически разжиженная позднейшая форма чего-то очень энергичного, активного и сильного: магического заклинания, принуждения бога» (Т. Манн)
Самая первая, самая красивая, мелодичная часть этой повести – молитва героя. Именно такая молитва, не тихая христианская но убеждение, заклинание, попытка слабого, потерянного человека принудить судьбу измениться. Во имя его любви.
При том, такой любви, в которую очень поверить первой любви, в которой разом встретилась та самая девушка, румяная, взволнованная, очень юная «Она» – и еще весна, цветущие деревья, красота мира, воспринятая молодой, впечатлительной душой, и еще вера в светлое будущее, наивная за него борьба. Все то, что было у него и все, что отняли разом. Сама жизнь, которую он потерял, которую нельзя уже вернуть, но он верит, что можно, с одной единственной нити, с Нее, в образ которой измученно сердце соединило все светлое, что сумело сохранить.
Но Бог, в которого герой никогда прежде не верил, конечно, не внемлет молитве и карает героя за нее, не то чтобы жестоко стирает с лица земли, прекращая разом и надежды и муки. Вообще, у Грина очень интересен мотив «молитвы», она предстает, как заклинание, которое может читать лишь избранный. Для всех же остальных это слабость, непозволительное покушение на божественные сферы. Так и здесь. Молитва сломанного тюрьмой человека, искренняя, жалобная, тихая, у которой недостаточно силы, чтобы заставить Бога покориться человеческой воле.
«У него была одна молитва, только одна…»
1) Функция определена всюду, кроме точек .
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.
9) Теперь, используя полученные данные, строим чертеж: