Пусть ширина х см, длина у см. Площадь S=xy кв см.
Если ширину уменьшить на 2 см, а длину увеличить на 3 см, то ширина станет равно (х-2) см, длина (у+3) см. Площадь (х-2)(у+3) уменьшится на 8 кв см. Уравнение. ху=(х+2)(у+3)+8
Если ширину увеличить на 4 и длину увеличить на 4, то ширина станет равной (х+4), длина - (у+4). Площадь (х+4)(у+4) увеличится на 80 кв. см. Уравнение. (х+4)(у+4)=ху+80
2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
Площадь S=xy кв см.
Если ширину уменьшить на 2 см, а длину увеличить на 3 см, то
ширина станет равно (х-2) см, длина (у+3) см.
Площадь (х-2)(у+3) уменьшится на 8 кв см.
Уравнение.
ху=(х+2)(у+3)+8
Если ширину увеличить на 4 и длину увеличить на 4, то ширина станет равной (х+4), длина - (у+4).
Площадь (х+4)(у+4) увеличится на 80 кв. см.
Уравнение.
(х+4)(у+4)=ху+80
Система уравнений
(х-2)(у+3)+8=ху
(х+4)(у+4)=ху+80
3х-2у+2=0
4х+4у-64=0
или
3х-2у+2=0
х+у-16=0
Умножаем второе уравнение на 2
3х-2у+2=0
2х+2у-32=0
Складываем
5х-30=0
х=6
х+у-16=0
у=16-х=16-6=10
О т в е т. 10 см длина и 6 см ширина