Объяснение:
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 10
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=10
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=10
2n+1+2n+5=10
4n=4
n=1
1; 2и 3; 4
(2²-1²)+(4²-3²)=10
3+7=10 - верно
Объяснение:
Решить уравнение f (x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется
[-2;-1] и [2;~) возрастает [-1;2] убывает
точки экстремума
Хmin =2; Xmax=-1 ответ С
Объяснение: