разложим с группировки
Рассмотрим x²+bx+c
. Найдем пару целых чисел, произведение которых равно c, а сумма равна b. В данном случае произведение равно 12, а сумма равна -7
Запишем разложение на множители, используя эти целые числа.
Если любой отдельный множитель в левой части уравнения равен 0 ,то и все выражение будет равняться 0.
Используем каждый корень для создания проверочных интервалов.
Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.
Решение включает все истинные интервалы.
Результат можно выразить в различном виде.
Форма неравенства:
x < 3 или x > 4
Запись в виде интервала:
Парабола – график квадратичной функции. Этот график позволяет прослеживать основные свойства функции в зависимости от вида квадратичной функции.
Существуют различные преобразования графиков, если тебе нужно узнать поподробнее об этом напиши в комментариях и я объясню.
Мы рассмотрим только все самое основное.
В функции y= a
От коэффициента а зависит то куда направлены ветви параболы и то, как они идут.
Если коэффициент а>0, тогда ветви будут идти вверх.
Если коэффициент а<0, тогда ветви будут идти вниз.
От этого коэффициента и зависит то, как они выглядят.
Если коэффициент больше 1, то парабола будет идти резче вверх, а то, насколько он больше 1 будет показателем того насколько она идет резче по оси оу.
Если коэффициент больше 0, но меньше 1, то парабола будет более прижатой к оси абсцисс (ох), а коэффициент будет показателем того насколько она прижата к оси.
Для этого на примере рассмотрим графики функций у= , у=2
и у=
Заранее прощения не за самые ровные графики.
На этом графике мы видим подтверждение ранее сказанного правила.
По функции можно сразу определять каким будет график параболы.
открой скрин там ответ поставь лутший оьвет