1. Интегрирование ведется по множеству 0 < x < 1, 0 < y < √(2x-x^2)
√(2x - x^2) принимает значения от 0 (x = 0) до 1 (x = 1), так что множество интегрирования является частью множеста 0 < x < 1, 0 < y < 1, где выполняется y < √(2x - x^2)
Во вложении - график функции. Синим цветом показана одна из линий при m=2.25. Вторая линия совпадает с осью абсцисс (m=0). Исходная функция содержит функцию абсолютной величины, поэтому её надо рассматривать отдельно на участках, где выражение под знаком абсолютной величины отрицательно и положительно, т.е. на интервалах (-∞;-2] и [-2;+∞] На первом интервале |x+2|≤0 и функция примет следующий вид: y=x²+3x+4(x+2)+2 ⇒ y=x²+7x+10. График функции - квадратная парабола с ветвями, направленными вверх (коэффициент при х² положительный). Чтобы определить точки пересечения с осью абсцисс составим уравнение x²+7x+10=0 ⇒ x1=-5; x2=-2 - это и будут точки пересечения графика функции с осью абсцисс. На втором интервале |x+2|≥0 и функция примет следующий вид: y=x²+3x-4(x+2)+2 ⇒ y=x²-x-6. График функции - квадратная парабола с ветвями, направленными вверх (коэффициент при х² положительный). Чтобы определить точки пересечения с осью абсцисс составим уравнение x²-x-6=0 ⇒ x3=-2; x4=3 - это и будут точки пересечения графика функции с осью абсцисс. Корни х2 и х3 совпали, это значит, что всего имеется три точки пересечения графиков с осью обсцисс в точках х1=-5б х2=-2б х3=3. Это и будет первая из искомых прямых, т.е. m1=0. Построив и рассмотрев график функции, можно определить, что вторая прямая, параллельная оси абсцисс и имеющая с графиком функции ровно три общие точки - это прямая, проходящая через минимум первой из рассмотренных функций (показана на графике синим цветом). Для нахождения точки экстремума функции y=x²+7x+10 достаточно её производную приравнять нулю. y'=2x+7; 2x+7=0 ⇒ x=-3.5 Подставляя найденное значение x в выражение функции получим y=(-3.5)²-7*3.5+10= -2.25, т.е. m2=-2.25.
1. Интегрирование ведется по множеству 0 < x < 1, 0 < y < √(2x-x^2)
√(2x - x^2) принимает значения от 0 (x = 0) до 1 (x = 1), так что множество интегрирования является частью множеста 0 < x < 1, 0 < y < 1, где выполняется y < √(2x - x^2)
0 < y < √(2x - x^2) при 0 < x < 1 эквивалентно 0 < y^2 < 2x - x^2 = 1 - (1 - 2x + x^2) = 1 - (x-1)^2
т.е. (x-1)^2 < 1 - y^2
|x - 1| = 1 - x < √(1 - y^2)
x > 1 - √(1 - y^2)
ответ: интеграл от 0 до 1 по dy интеграл от 1 - √(1-y^2) до 1 f(x,y) по dx
2. 0 < y < 1, -√(1-y^2) < x < 1-y
-√(1-y^2) принимает значения от -1 (y = 0) до 0 (y = 1)
1 - y принимает значения от 0 (y = 1) до 1 (y = 0)
Т.е. область интегрирования: -1 < x < 1, 0 < y < 1, где одновременно -√(1-y^2) < x и x < 1-y
x < 1 - y ~ y < 1 - x
-√(1-y^2) < x :
1) При x > 0 - любой y (от 0 до 1)
2) При x < 0:
√(1-y^2) > (-x) > 0
1 - y^2 > x^2
0 < y^2 < 1 - x^2
0 < y < √(1 - x^2)
Т.е. исходные условия эквивалентны тому, что:
при x >= 0: y < 1 - x
при x < 0: одновременно y < √(1 - x^2) и y < 1 - x, но т.к. √(1 - x^2) <= 1 - x при x < 0, достаточно условия y < √(1 - x^2)
ответ: (интеграл от -1 до 0 по dx интеграл от 0 до √(1 - x^2) f(x,y) по dy) + (интеграл от 0 до 1 по dx интеграл от 0 до 1 - x f(x,y) по dy)
Или, что то же самое, интеграл от -1 до 1 по dx от 0 до min{ 1 - x, √(1 - x^2) } f(x,y) по dy