М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лидия99
Лидия99
28.04.2022 01:38 •  Алгебра

Сократить дробь 467 пример


Сократить дробь 467 пример

👇
Ответ:
Reginmdms
Reginmdms
28.04.2022

на фото

Объяснение:


Сократить дробь 467 пример
4,8(1 оценок)
Открыть все ответы
Ответ:
mgam56
mgam56
28.04.2022
Областью определения является пересечение областей определения функций корень(2x-1) и корень(2*ax - 4x^2-a)
Из первой функции : 2x-1 >= 0,  x >= 1/2
Выражение 2*ax - 4x^2-a - квадратичная функция, ветви параболы вниз. Тогда, необходимые условия : кв. функция 1) имеет один корень и х >=1/2, или 2) имеет два корня и больший из них равен 1/2
D = (2a)^2 - 16a = 4a(a - 4)
1) D = 0;  4a(a - 4) = 0
1.1) a = 0:   - 4x^2 = 0;  x = 0; не подходит
1.2) a = 4:   8x - 4x^2-4 = 0; (х-1)^2 = 0; x = 1; подходит
2) D > 0; 4a(a - 4) > 0  a Є (-00; 0) U (4; +00)
x1,2 = (-2a +- корень(4a(a - 4)) ) / -8 = (a +- корень(a(a - 4)) ) / 4
x1,2 = 1/2
(a +- корень(a(a - 4)) ) / 4 = 1/2
(+- корень(a(a - 4)) ) ^ 2 = (2 - a) ^ 2
a ^ 2 - 4a = 4 + a ^ 2 - 4a
0 = 4
нет решений

ответ : при а = 4
4,6(84 оценок)
Ответ:
vasiaska234
vasiaska234
28.04.2022
\displaystyle y=log_{ \frac{1}{4} }( \sqrt{x}log_a5- \sqrt{a}log_a5-x^{ \frac{1}{2}+log_x(log_ax) }+ \sqrt{a}log_ax)

Основание логарифма больше 0 и не равно 1.
А подлогарифмическое выражение должно быть больше 0.
\begin{cases} \displaystyle x\ \textgreater \ 0\\a\ \textgreater \ 0\\x \neq 1\\a \neq 1\\log_ax\ \textgreater \ 0\rightarrow x\ \textgreater \ 1\quad \quad (\text{if}\,\,\,\,a\in(0;1)\rightarrow \,\,x\ \textless \ 1)\\\sqrt{x}log_a5- \sqrt{a}log_a5-x^{ \frac{1}{2}+log_x(log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0 \end{cases}

Разберемся с последним неравенством.
\sqrt{x}log_a5- \sqrt{a}log_a5-x^{ \frac{1}{2}+log_x(log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0\\\\\log_a5(\sqrt{x}- \sqrt{a})-x^{ log_x\sqrt{x}+log_x(log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0\\\\log_a5(\sqrt{x}- \sqrt{a})-x^{ log_x(\sqrt{x}log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0\\\\log_a5(\sqrt{x}- \sqrt{a})-\sqrt{x}log_ax+ \sqrt{a}log_ax\ \textgreater \ 0\\\\log_a5(\sqrt{x}- \sqrt{a})-log_ax(\sqrt{x}-\sqrt{a})\ \textgreater \ 0\\\\(\sqrt{x}- \sqrt{a})(log_a5-log_ax)\ \textgreater \ 0

Это неравенство легко решить методом интервалов.
Найдем нули функции: 
\sqrt{x}-\sqrt{a}=0\\\sqrt{x}=\sqrt{a}\\x=a\\\\log_a5-log_ax=0\\log_a5=log_ax\\x=5

Отсюда вытекают 3 случая.
(рассматривать случай при а от 0 до 1 нет смысла, так как область определения в это случае будет в границах от 0 до 1, и 4 целых чисел тут не наберется)
1)\quad a\in (1;5)\\2)\quad a= 5\\3)\quad a\in (5;+\infty)

Первый случай:
a\in(1;5)\\\\\underline{\quad\quad\quad 1 \quad \quad \quad -\quad \quad \quad a \quad + \quad 5 \quad \quad \quad -\quad \quad \quad}
В этом случае при любых значениях а в рассматриваемом промежутке не будет 4 целых чисел в области определения.
\text{ODZ}:\quad x\in (a;5),\,\,\,a\in(1;5)\,\,\,\rightarrow \,\,\,x\in(1;5)\,\,\,\rightarrow\,\,\,2,3,4

Второй случай:
При а = 5 вовсе не будет никакой области определения, так как 
a=5\\(\sqrt{x}- \sqrt{5})(log_55-log_5x)\ \textgreater \ 0\quad \quad\\\\\underline{\quad\quad\quad1\quad\quad\quad-\quad\quad\quad5\quad\quad\quad\quad-\quad\quad\quad\quad}

Третий случай:
a\in(5;+\infty)\\\\\underline{\quad\quad\quad1\quad\quad\quad-\quad\quad\quad5\quad\quad+\quad\quad a\quad\quad\quad\quad-\quad\quad\quad\quad}
В этом случае можно выделить те значения а при которых область определения функции будет содержать ровно 4 целых числа.
\text{ODZ:}\quad x\in(5;a)\quad \rightarrow \quad 6,7,8,9\quad \rightarrow a\in(9;10]

ответ:  \boxed{a\in(9;10]}
4,5(26 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ