Объяснение:
Имеется два существенно различных задания множеств. Можно либо перечислить все элементы множества, либо указать правило для определения того, принадлежит или не принадлежит рассматриваемому множеству любой данный объект.
Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Тогда пишут A = B.
Пустое множество — множество, не содержащее ни одного элемента. Одноэлементное множество — множество, состоящее из одного элемента. Универсальное множество (универсум) — множество, содержащее все мыслимые объекты.
Пересечением двух множеств, называется третье множество, сформированное из элементов, которые входят в оба первых множества.
Объединением двух множеств A и B называется множество A B, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств A или B. Пересечением множеств A и B называется множество A B, которое состоит из тех и только тех элементов, которые принадлежат как множеству A, так и множеству B.
1)f(x)=
2)
возьмем производную
(-x^3-2x^2+4x+5)=-3x^2-4x+4
найдем нули производной т.е.дискриминант)
-3x^2-4x+4=0
D/4=4+12=16=4
x=2+4=-2
x=2-4=2/3
отложим корни
расставим знаки
функция убывает на [-2;2/3]
функция возростает на (-бесонечности;-2]u[2/3;+бесконечности)
3)f(x)=x^4-8x^3-10
так же возьмем производную
x^4-8x^3-10=4x^3-24x^2
4x^3-24x^2=0
4x^2(x-6)=0
x=0 x=6
отложим корни
расставим знаки
функция убывает на (-бесконечности;6]
функция возростает на [6;+бесконечности)
4)f(x)=(x^2+2x)/(4x-1)
производная
(x^2+2x)/(4x-1)=((2x+2)(4x-1)-4(x^2+2x))/(4x-1)^2=(4x^2-2x-2)/(4x-1)^2=((x-1)(x+1/2))/(4x-1)^2 ООФ x не равен 1/4
нули производной
x=1
x=-1/2
отложим корни
расставим знаки
функция убывает на [-1/2;1/4)u(1/4;1]
функция возростает на (-бесконечности; -1/2]u[1;+бесконечности)
1) ( x^{2} + х -2 )=0
D=1+8=9
x1=-1+3/2=1
x2=-1-3/2=-2
2) (2x+3)=0
2x=-3
x=-1.5
3)-1.5+1+(-2)=-2.5
ответ:1