Войти
АнонимМатематика15 декабря ПОЖ!!! Составьте уравнение касательной к графику функции y=2x+5-e^x+3 в точке с абсциссой, равной -3
ответ или решение1
Орехов Пётр
Воспользуемся алгоритмом составления уравнения касательной к графику функции:
Обозначим абсциссу точки касания буквой а. а = - 3.
Вычислим f (а). f (а) = f (- 3) = 2 * (- 3) + 5 – e – 3 + 3 = - 6 + 5 – e – 3 + 3 = 2 – e – 3.
Найдем f' (х) и вычислим f' (а). f' (х) = (2 x + 5 – e х + 3)' = (2 x)' + 5' – (e х)' + 3' = 2 - e х; f' (а) = f' (- 3) = 2 – e – 3.
Подставим найденные значения числа а = - 3, f (а) = 2 – e – 3 , f' (а) = 2 – e – 3 в формулу y = f (а) + f' (а) (х – а). Получим:
y = 2 – e – 3 + (2 – e – 3) * (х + 3) = 2 – e – 3 + 2 х + 6 - e – 3 х – 3 e – 3 = 2 х – 4 e – 3 + 8.
ответ: y = 2 х – 4 e – 3 + 8.
27 минут =27/60 часа=9/20 часа
29 минут =29/60 часа
время, которое велосипедит тратит на прохождение пути s/v
Если он увеличит скорость на 9км/ч , то время прохождения станет s/(v+9)
s/v - s/(v+9) = 9/20
Если он уменьшит скорость на 5км/ч , то время прохождения станет s/(v-5)
s/(v-5) - s/v = 29/60
получили систему из двух уравнений. Выразим s из каждого из них
первое уравнение
s/v - s/(v+9) = 9/20
s(1/v - 1/(v+9)) = 9/20
s((v+9-v)/v(v+9)) = 9/20
s(9/v(v+9)) = 9/20
s(1/v(v+9)) = 1/20
s=v(v+9)/20
второе уравнение
s/(v-5) - s/v = 29/60
s(1/(v-5) - 1/v) = 29/60
s((v-(v-5))/v(v-5) ) = 29/60
s(5)/v(v-5) ) = 29/60
s=29v(v-5)/300
теперь приравняем оба уравнения
v(v+9)/20=29v(v-5)/300
(v+9)/2=29(v-5)/30
15(v+9)=29(v-5)
15v+135=29v-145
14v=280
v=20 км/ч