№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем: можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка: Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу: Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
Y'=3x^2-27; y'=0; 3x^2-27=0; x^2=9; x1=-3; x2=3. Это критические точки, причем обе нах-ся в заданном интервале.Узнаем, кто из них кто: максимум или минимум. ДЛя этого найдем значения производной в точке х=4 , а потом знаки будем чередовать, так как здесь нет уравнения четной степени. y'(4)=3*4^2-27=48-27=21>0; y'(2)=3*2^2-27=-9<0; y'(-4)=3*(-4)^2-27=48-27=21>0. Видно, что в точке х=-3 производная меняет знак с плюса на минус, это точка максимума. Найдем значение ф-ции в этой точке у наиб.=у(-3)=(-3)^3-27*(-3) +3=-27+81+3=57; В точке х=3 производная меняет знак с минуса на плюс_ это точка минимума и здесь будет наим. значение ф-ции. у наим=у(3)=3^3-27*3+3=27-81+3=-51.
a7=a1+d(n-1)
-10=a1+(-1)*(7-1)
-10=a1-6
a1=-4
a9= a1+d(n-1)=-4+(-1(9-1))=-4+(-8)=-12
S9=((a1+a9)/2) *9=((-4+(-12)/2)*9=(-16/2)*9=-8*9=-72