так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6
х=(-1) и х=(-5.5)
Решение:Формула сокращённого умножения:
По этой формуле х²+4х+4 мы можем записать как (х+2)². Также вынесем х в знаменателе второй дроби.
Приведём дроби к общему знаменателю:
Если дробь равна нулю, числитель равен нулю, знаменатель - не равен нулю.
ОДЗ:
х(х+2)² ≠ 0
х≠0 и (х+2)²≠0
х≠0 и х+2≠0
х≠0 и х≠(-2)
Прировняем числитель дроби к нулю:
Приведём подобные слагаемые:
Умножим уравнение на (-1):
Имеем квадратное уравнение. Решим по дискриминанту.
Учёв ОДЗ, имеем два решения: х=(-1) и х=(-5.5).