Первый В этом слове две буквы И, а все остальные буквы разные. Временно будем считать разными и буквы И, обозначив их через И1 и И2. При этом предположении получится 5! = 120 разных слов. Однако те слова, которые получаются друг из друга перестановкой букв И1 и И2, на самом деле одинаковы. Таким образом, полученные 120 слов разбиваются на пары одинаковых. Поэтому разных слов всего 120 : 2 = 60.
Второй Два места для буквы И можно выбрать Остальные 3 буквы можно переставлять по 3 оставшимся местам Итого 6·10 = 60 слов.
в) Аналогично б) получим слов.
г) Первый В этом слове три буквы С и две буквы И. Считая все буквы различными, получаем 11! слов. Отождествляя слова, отличающиеся лишь перестановкой букв И, но не С, получаем слов. Отождествляя теперь слова, отличающиеся перестановкой букв С, получаем окончательный результат .
Второй Три места для буквы С можно выбрать места из 8 оставшихся для буквы И Осталось 6 букв на 6 мест. Всего получаем слов.
д) Аналогично г) получаем слов.
ответ
а) 6! = 720; б) 60; в) 6720; г) 11! : 12 = 3326400; д) 10! : 24 = 1511200 слов.
Можно методом подбора найти эти числа.
11- сумма 5+6
А их произведение - 30.
Но если требуется вычислить их, следует составить систему:
|а+b=11
|ab=30
Выразим а через b
a=11-b
Подставим в выражение площади:
ab=(11-b)b
(11-b)b=30
Получится квадратное уравнение с теми же корнями:
Его решение даст тот же результат: 5 и 6. ( Вычисления давать ну буду, они простые)
Задача 2)
Полупериметр прямоугольника
42:2=21.
Методом подбора найдем числа 7 и 14.
Система:
|а+b=21
|ab=98
Дальнейшее решение по схеме, данной выше. Квадратное уравнение, корни 7 и 14
Задача 3)
Подбором числа в третьей задаче найти вряд ли получится, но в принципе решение ничем не отличается от предыдущих.
Один катет обозначим а, второй b
b=(а+41)
По т.Пифагора квадрат гипотенузы равен сумме квадратов катетов.
89²=а²+(а+41)²
89²=a²+a²+82а+ 41²
2a²+82а+ 6240
а²+41а-3120=0
корни уравнения ( катеты) 39 и 80
Найти площадь прямоугольного треугольника по формуле
S=ab:2 уже не составит труда.