Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1. Умножим все части двойного неравенства 1,7<√3<1,8 на √4=2: 1,7*2<√3*√4<1,8*2 3,4<√12<3,6 2. Перемножим данные двойные неравенства : 1,7*2,6<√3*√7<1,8*2,7 4,42<√21<4,86 Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные: -4,42>-√21>-4,86 или в более привычной форме -4,86<-√21<-4,42 3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42: 3,4-4,86<√12-√21<3,6-4,42 -1,26<√12-√21<-1,02.
-s²+6s=0
s(1;2)=(-6±√(6²-4*(-1)*0))/-2
s(1)=0
s(2)=6
5d²-5d=0 |÷5
d²-d=0
d(d-1)=0
d(1)=0
d(2)=1
4a²+25=29
4a²=29-25=4
a²=1
a= ±1