1) 8 < 2x+y < 30
2) 6 < xy < 48
3) -3 < x-y < 6
Объяснение:
3 < x < 8
2 < y < 6
1) 2x+y
сначала вычислим минимальный предел:
2*3+2=8;
затем максимальный:
8*3+6=30.
Получится 8 < 2x+y < 30
2) xy
сначала вычислим минимальный предел:
3*2=6;
затем максимальный:
8*6=48.
Получится 6 < xy < 48
3) x-y
Так как здесь присутствует вычитание. Сначала из меньшего значения x вычитаем большее значение y, так мы получим минимальный предел выражения x-y. Потом из большего значения x вычитаем меньшее значение y, так мы получим максимальный предел значения x-y.
сначала вычислим минимальный предел:
3-6=-3;
затем максимальный:
8-2=6.
Получится -3 < x-y < 6
1) (X+2)*(X+3)
2) (X-2)*(X-3)
3) (X-5)*(X-3)
4) (X-3)*(X-4)
5) (X-4)*(X+3)
6)(X-4)*(X+2)
7) (X-3)*(X+2)
8) (X+5)*(X-3)
Ну во-первых, раскладывается квадратный трехчлен по формуле:
a(x- первый корень)*(х- второй корень)
Корни мы находим либо решая этот трехчлен как квадратное уравнение, либо по теореме Виета (удобнее, запись становится короче).
Я решала в основном по теореме(исключение - трехчлен под номером 6). В общем, теорема Виета:
сумма корней равна числу b,но с противоположным знаком (т.е. число b в формуле ax²+bx+c)
А произведение корней (x1*x2) равно числу c(знак не меняем!)
Через дискриминант решаем как обычное квадратное уравнение, т.е. выписываем ниже трехчлен уже как уравнение (проще говоря, приписываем =0 к концу трехчлена)
x^2 - 25 = 0
x = ± 5
ОТВЕТ: -5; 5