М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anymay20041302
anymay20041302
11.11.2020 04:00 •  Алгебра

Вычислите tg(a-45°) если ctga=2/3

👇
Открыть все ответы
Ответ:
181101s
181101s
11.11.2020

1. Доказать тождество

sinα +sin5α+sin7α +sin11α  = 4cos2α*cos3α*sin6α

sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =

2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=

2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α

- - - - - - -

2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3

- - -

Cначала упростим выражение:

sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =

sinα(2cos5α*cos∝  - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =

sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=

= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) =  || sinα =-1/√3 ||

= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² )  = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27

4,5(22 оценок)
Ответ:
rar18
rar18
11.11.2020
Используя свойства остатков

первое число дает остаток 1 при делении на 4
значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1
число 1 при делении на 4 дает остаток 1
итого куб первого числа при делении на 4 даст остаток 1

второе число дает остаток 3 при делении на 4
значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27
число 27 при делении на 4 дает остаток 3

сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4,
так как 4 при делении на 4 дает остаток 0, то
сумма кубов этих чисел кратна 4
----------------------------------
второй

так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число
аналогично второе можно записать в виде 4k+3, где k - некоторое целое число

сумма кубов этих чисел
(4n+1)^3+(4k+3)^3=(4n)^3+3*(4n)^2*1+4*(4n)*1^2+1^3+(4k)^3+3*(4k)^2*3+3*(4k)*3^2+3^3=\\\\64n^3+48n^2+16n+1+64k^3+144k^2+108k+27=\\\\64n^3+48n^2+16n+64k^3+144k^2+108k+28=\\\\4(16n^3+12n^2+4n+16k^3+36k^2+27k+7)
а значит сумма кубов делится нацело на 4. Доказано
4,5(52 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ