В решении.
Объяснение:
При каких значениях x трёхчлен 2x²−7x+6 принимает отрицательные значения?
2x²−7x+6 < 0
Приравнять к нулю и решить как квадратное уравнение:
2x²−7x+6 = 0
D=b²-4ac =49-48=1 √D=1
х₁=(-b-√D)/2a
х₁=(7-1)/4
х₁=6/4
х₁=1,5;
х₂=(-b+√D)/2a
х₂=(7+1)/4
х₂=8/4
х₂=2.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1,5 и х= 2, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от 1,5 до 2, то есть, решения неравенства находятся в интервале
х∈ (1,5; 2), или 1,5 < x < 2.
Неравенство строгое, скобки круглые.
Верный ответ самый последний.
+ + + + + (- 5) - - - - - (5) + + + + +
Представим правую часть как :
Получим :
+ + + + + (- √26) - - - - - (√26) + + + + +
С учётом ОДЗ , получим :