М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ga77
ga77
01.02.2020 21:54 •  Алгебра

Вычислить
(7.42 \times \frac{5}{9} - ( - 11.48) \div 1 \frac{4}{5} ) \div 0.35 =

👇
Открыть все ответы
Ответ:
ratmir10
ratmir10
01.02.2020
1. Нет например x=0, y=1
2.Из условия x0=-a=2, отсюда a=-2, y=x^2-4x+3, подставляем (3;0), получаем 0=9-12+3=0 значит ответ да
3. Ну по идее нужно обнулить икс, поэтому 2x-1>0, x-1<0, x-2<0, получаем
x>1/2, x<1, x<2, то есть если a=2 у нас все числа от 1/2 до 1 являются корнями. ответ да
4.Рассмотрим x^3-ax-1=0. x=0 не является корнем ни при каком a, значит это уравнение равносильно исходному. Если у кубического многочлена 2 действительных корня, то обязательно один из них кратный (потому что комлексных корней у многочлена четное количество), отсюда x^3-ax-1=(x-p)^2(x-t). Раскрываем скобки приравниваем соответствующие коэффициенты друг другу получаем что a=\frac{3}{ \sqrt[3]{4} }, при этом корни p и t не совпадают, значит такое a подходит. ответ да
4,5(71 оценок)
Ответ:
denvolk00
denvolk00
01.02.2020

Определить промежутки монотонности функции, не используя производную функции.

y = (x² - x - 20)² - 18

=================================

Область определения функции  D (y) = R

y = (x² - x - 20)² - 18

Квадратичная функция в квадратичной функции

y = f(z);             z = g(x)

y = z^2-18;\ \ \ \ z=x^2-x-20

Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.

z=x^2-x-20;\ \ \ x_0=-\dfrac b{2a}=-\dfrac {-1}2=0,5     -  координата вершины

y = z^2-18;       z = 0   -  координата вершины параболы

x^2-x-20=0\\(x-5)(x+4)=0

x₁ = -4;   x₂ = 5   - координаты вершин параболы

Таким образом, есть три точки, которые определяют промежутки монотонности функции   y = (x² - x - 20)² - 18.

x₁ = -4;   x₀ = 0,5;   x₂ = 5

x ∈ (-∞; -4]   -  функция убывает  :   y(-5) > y(-4)

x ∈ [-4; 0,5]   -  функция возрастает :   y(-4) < y(0)

x ∈ [0,5; 5]   -  функция убывает :   y(1) > y(2)

x ∈ [5; +∞)   -  функция возрастает :   y(5) < y(6)

4,7(51 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ