Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки
по оси
, ведь для любой точки числовой окружности справедливо, что
, т.е. точка
имеет координаты
.
Если провести прямую, параллельную оси через точку
, то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке
и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это
и
.
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она
.
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно
.
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол
, что
. Главное здесь то, что
может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь
.
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а
- угол.
Пусть прямая пересекается с окружностью в точках
в первой четверти и
во второй четверти, а точку
на оси
мы обзовём
. Рассмотрим треугольники
и
, в них:
Треугольники и
равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол
и угол
.
Но углы мы отсчитываем от точки , обзовём её
. Тогда угол
. А это угол
первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный
. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами
надо добавить
, где
- целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если
- чётное, то формула трансформируется в
, если нечётное, то в
, ну а
. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Как-то так. Фу-у-у-ух. Много. Очень Много Букв.
P.S. Прости за задержку.
ответ: KN= 3 см, MN=5 см, KM= 10 см.
РKNM= 18 см.
Объяснение:
Пусть одна сторона равна 2х. Тогда вторая равна 4х, а третья - 6х.
Р=a+b+c, где а=2х, b=4x, c=6x.
2x+4x+6x=60;
12x=60;
x=5;
a=2x=2*5=10 см.
b=4*5=20 см.
с=6*5=30 см.
***
Точки середины сторон делят их на равные отрезки.
По теореме Фалеса имеют место отношения:
АК/АВ=BN/DC=AM/AC; (MN║AB; KM║BC; KN║AC).
MN=а/2=10/2=5 - одна сторона искомого треугольника.
MK=b/2=20/2=10 см - вторая сторона треугольника.
NK=с/2=6/2=3 см - третья сторона треугольника.
P MKN=MK+KN+MN=5+10+3=18 см.
a9=a1+d(9-1)
22=6+8d
8d=16
d=2
S20=20*(1/2)* (2*6+2*19)=20*(6+19)=20*25=500
Объяснение: