Объяснение:
Sin² (x) - 7 sin (x) cos (x)+2(Sin² (x)+cos (x))=0
Sin² (x) - 7 sin (x) cos (x)+2Sin² (x)+2cos² (x)=0 / cos² (x)
tg² X-7tg X +2tg²X+2=0
3tg² X-7tg X +2=0 tg² X=к
3к² -7к +2=0
к=(7±√(49-4*3*2))/(2*3)
к=(7±√(49-24))/6
к=(7±5)/6
к₁=2/6=1/3 tg² X=1/3 tg X =±√3/3
к₂=12/6=2 tg² X=2 tg X=±√2
tg X₁ =-√3/3 X₁ =arctg(-√3/3) X₁ = 5п/6 +пк
tg X₂ =+√3/3 X₂ =arctg(+√3/3) X₂ =п/6 +пк
tg X₃ =-√2 X ₃=arctg(-√2) Х₃≈ 0.6959п+пк
tg X ₄=+√2 X ₄=arctg(+√2) Х₄≈0,304п+пк
22
Объяснение:
1. Чтобы найти наибольшее значение функции, возьмем производную от этой функции и приравняем ее к нулю (т.к. минимумы и максимумы функции находятся в точках, где производная равна 0)
y' = 3x²-5x - 2 = 0
2. Решаем это квадратное уравнение:
D = 49
x_1 =( 5 -7 ) / 6 = -1/3 (не подходит, точка не принадлежит указанному промежутку).
x_2 = (5 + 7) / 6 = 2, принадлежит промежутку.
3. Находим значение функции в точке x = 2
y (x = 2) = 2³-2.5*2²-2*2+6 = 8 - 10 - 4 + 6 = 14 - 14 = 0
4. ВНИМАНИЕ: наибольшее значение может достигаться на краях промежутка , обязательно проверяем края
y (x = 0) = 0 - 2.5 * 0 - 2* 0 + 6 = 6
y (x = 4) = 4³ - 2.5 * 4² - 2*4 + 6 = 64 - 40 - 8 + 6 = 22
Итого, самое большое значение равно 22 и достигается в точке x = 4