1) Из того, что ВД - медиана, - равенство площадей треугольников АВД и СВД. 2) Из равенства площадей - равенство сторон АВ и ВС. 3) Из равенства сторон - ВД - не только медиана треугольника АВС, но и биссектриса (угол АВД = углу СВД) и высота (ВД перпендикулярна АС). 4) Из перпендикулярности ВД к АС треугольник АВД - прямоугольный. 5) Из отношения 1:2 катета ВД к гипотенузе АВ - угол А=30 градусов. 6) Из суммы углов треугольника = 180 градусов - угол АВД = 60 градусов. 7) Из 3) угол СВД = 60 градусов. 8) Найти угол FВС. 9) Сравнить угол FВС с углом СВД. 10) Сделать вывод.
Построим. 1) функция определена для всех значений x 2) функция принимает любые значения y С областью определения и значений всё в порядке. Найдем точки пересечение с осью абсцисс x^2+3x-10=0 По т.Виета x1=-5 x2=2 Найдём вершину параболы использую стандартную формулу. => Найдём ординату вершины. f(-1,5) = 2,25 - 4,5- 10 = -12,25 И построим график данной функции в прямоугольной системе координат Для четкости построения возьмём еще пару точек для этого подставляем любое значение x в функцию, к примеру мне нужна симметрия: x=1 ; y= -6 x=-4; y = -6
x = 3, y = 2.
Объяснение:
Для розв'язання даної системи рівнянь можна використати метод елімінації змінних або метод підстановки. Розглянемо обидва методи.
Метод елімінації змінних:
Множимо перше рівняння на 2 та друге рівняння на 3, щоб у коефіцієнтах при змінній y отримати однакові числа з протилежними знаками:
2 * (11x + 3y) = 2 * 39
3 * (3x - 2y) = 3 * 5
Отримуємо:
22x + 6y = 78
9x - 6y = 15
Складаємо отримані рівняння:
(22x + 6y) + (9x - 6y) = 78 + 15
31x = 93
x = 93 / 31
x = 3
Підставляємо значення x у будь-яке з початкових рівнянь, наприклад, в перше:
11x + 3y = 39
11 * 3 + 3y = 39
33 + 3y = 39
3y = 39 - 33
3y = 6
y = 6 / 3
y = 2
Отже, розв'язок системи рівнянь:
x = 3, y = 2.
Метод підстановки:
З другого рівняння виражаємо змінну x:
3x = 5 + 2y
x = (5 + 2y) / 3
Підставляємо отримане значення x в перше рівняння:
11x + 3y = 39
11 * ((5 + 2y) / 3) + 3y = 39
Отримуємо рівняння з однією змінною y:
(55 + 22y) / 3 + 3y = 39
55 + 22y + 9y = 117
31y = 117 - 55
31y = 62
y = 62 / 31
y = 2
Підставляємо значення y у вираз для x:
x = (5 + 2 * 2) / 3
x = 9 / 3
x = 3
Отже, отримуємо той самий розв'язок системи рівнянь:
x = 3, y = 2.