Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета
Поэтому
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .