Выражение: (0.1*x^3-0.3*y)*(0.1*x^3-0.3*y)
ответ: 0.01*x^6-0.06*x^3*y+0.09*y^2
Решаем по действиям:
1. (0.1*x^3-0.3*y)*(0.1*x^3-0.3*y)=0.01*x^6-0.06*x^3*y+0.09*y^2
(0.1*x^3-0.3*y)*(0.1*x^3-0.3*y)=0.1*x^3*0.1*x^3-0.1*x^3*0.3*y-0.3*y*0.1*x^3+0.3*y*0.3*y
1.1. 0.1*0.1=0.01
X0.1
_0_._1_ _
01
0_0_ _ _
0.01
1.2. x^3*x^3=x^6
x^3*x^3=x^(3+3)
1.2.1. 3+3=6
+3
_3_
6
1.3. 0.1*0.3=0.03
X0.1
_0_._3_ _
03
0_0_ _ _
0.03
1.4. 0.3*0.1=0.03
X0.3
_0_._1_ _
03
0_0_ _ _
0.03
1.5. -0.03*x^3*y-0.03*y*x^3=-0.06*x^3*y
1.6. 0.3*0.3=0.09
X0.3
_0_._3_ _
09
0_0_ _ _
0.09
1.7. y*y=y^2
y*y=y^(1+1)
1.7.1. 1+1=2
+1
_1_
2
Решаем по шагам:
1. 0.01*x^6-0.06*x^3*y+0.09*y^2
1.1. (0.1*x^3-0.3*y)*(0.1*x^3-0.3*y)=0.01*x^6-0.06*x^3*y+0.09*y^2
(0.1*x^3-0.3*y)*(0.1*x^3-0.3*y)=0.1*x^3*0.1*x^3-0.1*x^3*0.3*y-0.3*y*0.1*x^3+0.3*y*0.3*y
1.1.1. 0.1*0.1=0.01
X0.1
_0_._1_ _
01
0_0_ _ _
0.01
1.1.2. x^3*x^3=x^6
x^3*x^3=x^(3+3)
1.1.2.1. 3+3=6
+3
_3_
6
1.1.3. 0.1*0.3=0.03
X0.1
_0_._3_ _
03
0_0_ _ _
0.03
1.1.4. 0.3*0.1=0.03
X0.3
_0_._1_ _
03
0_0_ _ _
0.03
1.1.5. -0.03*x^3*y-0.03*y*x^3=-0.06*x^3*y
1.1.6. 0.3*0.3=0.09
X0.3
_0_._3_ _
09
0_0_ _ _
0.09
1.1.7. y*y=y^2
y*y=y^(1+1)
1.1.7.1. 1+1=2
+1
_1_
2
Для складання рівняння дотичної до графіка функції f(x) = x³ + x в точці x₀ = -1, нам знадобиться використати знання про похідні.
Спочатку знайдемо похідну функції f(x). Для цього візьмемо похідну кожного доданку окремо і застосуємо правило диференціювання степеневої функції та правило суми похідних:
f'(x) = (x³)' + (x)'
Знаючи, що похідна степеневої функції xⁿ, де n - це дійсне число, рівна n * xⁿ⁻¹, ми можемо обчислити похідну кожного доданку:
f'(x) = (3x²) + 1
Тепер, щоб знайти рівняння дотичної, ми можемо використовувати загальний вигляд рівняння прямої:
y = mx + c,
де m - це нахил дотичної, а c - це точка перетину з осі у.
В нашому випадку, ми шукаємо рівняння дотичної в точці x₀ = -1, тому підставимо це значення в нашу похідну:
f'(-1) = (3(-1)²) + 1 = 2.
Тепер, ми знаємо нахил дотичної m = 2 та точку перетину з осі у (-1, f(-1)).
Підставимо значення точки (-1, f(-1)) у загальне рівняння прямої:
f(-1) = m * (-1) + c,
f(-1) = 2 * (-1) + c,
Підставимо значення функції f(-1) = (-1)³ + (-1):
-1 = -2 + c,
c = 1.
Тепер, ми маємо значення нахилу m = 2 та точку перетину з осі у (0, 1).
Отже, рівняння дотичної до графіка функції f(x) = x³ + x в точці x₀ = -1 буде:
y = 2x + 1.
Объяснение: