Раздел долго плана: Школа: Каскабулакская средняя школа
5.3C Множества ФИО учителя: Рашидов Махмуд Исмаилович
Дата: 28.07.2017г.
Класс: 5 Количество присутствующих:15 отсутствующих:
Тема урока
Объединение и пересечение множеств
Цели обучения, которые достигаются на данном уроке (ссылка на учебную программу)
5.4.1.2 знать определения объединения и пересечения множеств;
5.4.1.3 находить объединение и пересечение заданных множеств, записывать результаты, используя символы , ;
Цели урока
Дать определения объединения и пересечения множеств формированию навыков находить объединения и пересечение заданных множеств и записывают результаты используя символы , ;
Критерии успеха
Учащийся достиг цели обучения, если:
1. знает определения объединения и пересечения множеств
2. находит объединение и пересечение заданных множеств. 3.записывает результаты, используя символы , ;
Языковые цели
В ходе урока учащиеся будут оперировать новыми терминами и понятиями, комментировать порядок выполнения действий с множествами
Предметная лексика и терминология:
множества, пересечение и объединение; подмножества, пересекающиеся и непересекающиеся множества, пустое множество, элементы множества.
Точность и ясность словесного выражения мыслей.
Привитие ценностей
Воспитание чувства патриотизма. Формирование и поддержание доверительных межличностных отношений, взаимного уважения, взаимной ответственности. Воспитание цельной и порядочной личности, формирование у учащихся коммуникативных навыков и навыков лидера 21го века.
Межпредметные связи
Знания, полученные в данном разделе, найдут применение в алгебре, геометрии, биологии, истории.
Навыки использования ИКТ
Интерактивная доска, презентация ,интернет, мобильные устройства.
Предварительные
знания
Знает понятия множества и его элементов, пустого множества;
Определяет характер отношений между множествами (пересекающиеся и непересекающиеся множества);
Знаком с понятием подмножества;
Умеет использовать символы , , , , , при работе с множествами;
Ход урока
Запланированные этапы урока
Запланированная деятельность на уроке
Ресурсы
Начало урока
Оргмомент
Позитивный психологический настрой на урок
(3 мин)
Деление на группы с приема «Множества»
(5-мин)
Целеполагание
Постановка цели урока и определение критериев успеха и оценивания.
(5 мин)
Групповая работа
(3 мин)
Середина урока.
Презентация новой темы
(5мин)
Приветствует учеников, проверяет готовность к уроку, желает успеха.
Метод «Дерево достижений»
Педагог. Обратите внимание на наше одинокое дерево. У каждого из вас есть листочки разного цвета. Я по вас взять один из них (любого цвета) и нашему дереву покрыться разноцветной листвой.
Тех, кто выбрал зеленый лист, ожидает успех на сегодняшнем занятии.
Те, кто выбрал
Красный, — желают общаться.
Желтый — проявят активность.
Синий — будут настойчивы.
Помните, что красота дерева зависит от вас, ваших стремлений и ожиданий.
Деление на группы прием «Множества»
Ученики делятся на группы, выбирая разных животных – птицы, млекопитающие, насекомые.
Используя прием деления на группы, учитель наводит на тему урока, задавая наводящие во тем самым актуализирует знания учащихся о множествах.
Что такое множество?
Назовите элементы:
множества «Времена года»
множества «Дни недели»
Что такое подмножество?
Назовите подмножество:
Множества «Растения»
Множества «Спортсмены»
Цели уроки определяются с приема «Проблемная ситуация».
Введение в урок проблемного диалога необходимо для определения учащимися границ знания — незнания. Создание на уроке проблемной ситуации дает возможность учащемуся сформулировать цель занятия.
Учитель показывает ученикам задачу.
Махмуд и Екатерина содержат аквариумных рыбок. Махмуд коллекционирует только меченосцев, а Екатерина- рыбок красного цвета. У детей 8 меченосцев, а красных рыбок-7. Всего у детей-12 рыбок. Возможно ли такое?
Объяснение:
Дано: 10 различных цифр: 1 2 3 4 5 6 7 8 9 0
Составить число кратное 11.
Признак делимости на 11: сумма цифр числа, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Сумма всех 10-и цифр: 1+2+3+4+5+6+7+8+9+0=45, 45/2=22(ост.1), поэтому, поскольку в искомом числе должно быть равное количество четных и не четных мест, суммацифр на четных местах не может быть равна сумме цифр на нечетных.
Тогда нужно проверить 2-ю часть признака делимости:
45-11=34
34/2=17
45-17=28
28-17=11, значит сумма чисел, стоящтх на нечетных местах( 1; 3; 5; 7; 9) должна быть = 17, а на четных местах (2; 4; 6; 8; 10) = 28.
Теперь нужно разложить 17 и 28, каждое, на 5 слагаемых:
17=1+2+3+4+7
28=5+6+8+9+0
ответ: Данное разложение возможно, значит такое число существует.
Искомое число: 1526384970.
В задании сказано, составить число, поэтому найдено 1 число, на самом деле, таких чисел 5!+5!=2*5!=2(5*4*3*2*1)=240, потому, что при перестановке мест слагаемых сумма не меняется, поэтому сумма чисел, стоящих на нечетных местах, может быть в 120 вариантах 5*4*3*2*1=120, и сумма чисел, стоящих на четных местах может быть тоже в 120 вариантах (включая 0, потому, что 0 стоит на четном месте, поэтому никогда не встанет на 1 место, что могло бы изменить число с 10-и значного на 9-и значное)
Проверка с калькулятора:
1526384970/11=38762270