ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сплаве. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. В сплаве, где они вместе стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг — вес третьего сплава.
(100*4)/(Х+25)+(100*8)/Х=40
Х^2-5*Х-500=0
Х=25 (второй корень отбрасываем, т.к. он отрицательный).
В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг.