Советую проверить решение! могут быть мелкие ошибки.
Решение: Для начала ищем производную функции: y'=3x^2+12x+9 Затем приравниваем производную к нулю: 3x^2+12x+9=0 Ищем дискриминант: Д=36 Ищем корни квадратного уравнения: x1=-1; x2=-3 Находим значения функции на концах промежутка (если промежуток с квадратными скобками) и в критических точках производной т.е. в корнях квадратного уравнения: y(-2)=-8+24-18+8=6 y(-1)= -1+6-9+8=4 y(0)=8 y(-3) не принадлежит заданному промежутку Выбираем наименьшее значение. Если у вас скобки в задании всё таки круглые, то ответ будет 4, а если скобки квадратные, то наименьшим всё равно остается 4.
9^x = (3^x)^2
6^x = 2^x * 3^x
здесь нужно делить обе части равенства на (2^x)^2
или на (3^x)^2 ---без разницы)))
разделим на (2^x)^2
подучим: 1 - 12*(3^x) / (2^x) + 11* ((3/2)^x)^2 = 0
это квадратное уравнение относительно (3/2)^x
D=12*12 - 4*11 = 4*(36-11) = 4*25 = 10^2
корни: (12 +- 10) / 22
(3/2)^x = 1 ---> x = 0
(3/2)^x = 1/11 ---> (2/3)^x = 11 ---> x = log(2/3) (11)
разделим на (3^x)^2
подучим: ((2^x)/(3^x))^2 - 12*(2^x) / (3^x) + 11 = 0
это квадратное уравнение относительно (2/3)^x
D=12*12 - 4*11 = 4*(36-11) = 4*25 = 10^2
корни: (12 +- 10) / 2 = 6 +- 5
(2/3)^x = 1 ---> x = 0
(2/3)^x = 11 ---> x = log(2/3) (11)