Дано точки А (-6; 2) та В (-3; 4). Побудуйте:
А) відрізок АВ;
Б) відрізок А 1 В 1 , симетричний відрізку АВ відносно осі ординат;
В) відрізок А 2 В 2 , симетричний відрізку А 1 В 1 відносно початку координат;
Г) відрізок А 3 В 3 шляхом повороту відрізка А 2 В 2 на кут 90° навколо початку координат
проти годинникової стрілки.
Знайдіть координати точок А 3 і В 3 .
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.