Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
В декартовой системе координат окружность не является графиком функции, но она может быть описана как объединение графиков двух следующих функций: y = yo+-V(R^2-(x-xo)^2). Примечание - V - это знак корня квадратного. Если окружность касается оси абсцисс в начале координат и проходит через точку(0;-4), то радиус её равен 4/2 = 2, а координаты её центра: хо=0, уо= -2. Уравнение этой окружности будет иметь вид: y = -2+-V(4-x^2). Уравнения биссектрис координатных углов у=х и у=-х, если решить совместно эти уравнения, получим координаты точек пересечения с биссектрисами координатных углов: это(-2;-2) и (2;-2).
Призма правильная =..>в основании равносторонний треугольник =.>средняя линия =2.Боковые грани -равные прямоугольники по условию .Сечение -равнобедренный треугольник .Основание сечения -средняя линия основания призмы.пусть призма -АВСА1В1С1.В грани АА1В1В проведемВ1Е ,а в грани ВВ1С1С проведем В1Д ,ПОЛУЧИЛИ сечение ЕВ1Д - равнобедренный треугольник .Из АА1В1В находим В1Е-гипотенуза прямоугольного треугольника ,гдеЕВ=2 ,В1В=КОРЕНЬ ИЗ13 в1ва=90 градусов по условию .В1Е=КОРЕНЬ ИЗ 17. .Площадь сечения (треугольника) S=В1ЕхЕДхSIN( угла В1ЕД) SIN (В1ЕД_= корень из13./ на корень из 17. следовательно S сеч.=1/2 .Х (корень из 13/17 х на корень из 17 х на корень из 13 .ОТВЕТ корень из 13
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).