Решите примеры а) 2х в квадрате -7х+4=0; б)5х в квадрате-8х+3=0 в) 3х в квадрате -13х+14=0 г) 2y в квадрате - 9 у +10=0 д) 5у в квадрате-6у+1=0 е) 4х в квадрате + х-33=0 ж) у в квадрате -10 у -24 =0 з) p в квадрате +p-90=0
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
1. область определения: от минус бесконечно до плюс бесконеч. 2. ни четная, ни нечетная 3. непериодич. 4.пересечения с осями : ох : точки (9; 0) и (1; 0) с оу: точка ( 0; 9) 5. производная функции будет равна = 2х-10 приравниваем к нулю 2х-10=0 х= 5 находим промежутки монотонности: функция убывает от минус бесконечно до 5, возрастает от 5 до плюс бесконечности), точка минимума (5; -16) по этим данным уже график самостоятельно. сначала отметь точку минимума, потом точки пересечения с осями и все, строй : ) учитывай промежутки монотонности