Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
Формула площади трапеции S=mh=(AB+CD/2)h Зная радиус вписанной окружности, мы устанавливаем, что h=2r=6 Далее по т. о касательных, а так же зная, что трапеция равнобокая, мы имеем AC=12, AB=CD=x+6 BC=2x Находим по формуле длину отрезка между высотой из угла при меньшем основании и углом при большем основании: АС-ВС/2 = 6-х Так как высота - перпендикуляр, можно утверждать, что по т. Пифагора: (x-6)^2+h^2=(x+6)^2 т. е. 36+12х+х^2-36+12x-x^2=h^2 => 24x=36 => x=1.5 Далее вычисляем основания и считаем площадь: (12+3/2)*6=45 ответ: S=45 ед^2
tg(p*x/4)=sin(px/4)/cos(px/4)
sin(px/4)=0
cos(px/4)<>0
px/4=2pk
px=8pk
x=8k
k принадлежит Z
px/4<>p/2+2pk
px<>2p+8pk
x<>2+8k
ответ x=8k