как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
Уравнения в этом смысле не будут иметь решения, если дискриминант будет меньше 0. Найдем же его!
а) D = b^2-4*a*c
D=16p^2-4*(p-15)*(-3)=16p^2 + 12p - 180
(16p^2 + 12p - 180) должно быть меньше 0. Найдем значение p при 16p^2 + 12p - 180 = 0.
По формуле:
D/4= 36-16*(-180)=2916
p1=(-6+54)/16=3
p2=(-6-54)/16=-3.75
Есть такая формула рахложения квадратного трехчлена на множители : ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
16(p-3)(p+3.75)=0|:16
(p-3)(p+3.75)=0
Если произведение равно 0, то хотя бы один множитель равен 0. Значит :
p-3=0 или p+3.75=0
p=3 p=-3.75
При этих значениях дискриминат равен 0. Нам нужно,чтобы он был меньше. Значит при (p-3)(p+3.75)< 0
Следовательно, -3.75<p<3
Остальные аналогично.
Уравнение cos2x = -1,5 не имеет решений в действительных числах, поскольку косинус не превосходит единицу по модулю.